Arbitrary Functions in Group Theory
نویسندگان
چکیده
Two measures of how near an arbitrary function between groups is to being a homomorphism are considered. These have properties similar to conjugates and commutators. The authors show that there is a rich theory based on these structures, and that this theory can be used to unify disparate approaches such as group cohomology and the transfer and to prove theorems. The proof of the Schur-Zassenhaus theorem is recast in this context. We also present yet another proof of Cauchy’s theorem and a very quick approach to Sylow’s theorem.
منابع مشابه
Theory of block-pulse functions in numerical solution of Fredholm integral equations of the second kind
Recently, the block-pulse functions (BPFs) are used in solving electromagnetic scattering problem, which are modeled as linear Fredholm integral equations (FIEs) of the second kind. But the theoretical aspect of this method has not fully investigated yet. In this article, in addition to presenting a new approach for solving FIE of the second kind, the theory of both methods is investigated as a...
متن کاملElement Free Galerkin Method for Static Analysis of Thin Micro/Nanoscale Plates Based on the Nonlocal Plate Theory
In this article, element free Galerkin method is used for static analysis of thin micro/nanoscale plates based on the nonlocal plate theory. The problem is solved for the plates with arbitrary boundary conditions. Since shape functions of the element free Galerkin method do not satisfy the Kronecker’s delta property, the penalty method is used to impose the essential boundary conditions. Discre...
متن کاملAn Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients
Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...
متن کاملMRA parseval frame multiwavelets in L^2(R^d)
In this paper, we characterize multiresolution analysis(MRA) Parseval frame multiwavelets in L^2(R^d) with matrix dilations of the form (D f )(x) = sqrt{2}f (Ax), where A is an arbitrary expanding dtimes d matrix with integer coefficients, such that |detA| =2. We study a class of generalized low pass matrix filters that allow us to define (and construct) the subclass of MRA tight frame multiwa...
متن کاملExact analytical approach for free longitudinal vibration of nanorods based on nonlocal elasticity theory from wave standpoint
In this paper, free longitudinal vibration of nanorods is investigated from the wave viewpoint. The Eringen’s nonlocal elasticity theory is used for nanorods modelling. Wave propagation in a medium has a similar formulation as vibrations and thus, it can be used to describe the vibration behavior. Boundaries reflect the propagating waves after incident. Firstly, the governing quation of nanoro...
متن کاملRobot Motion Vision Pait I: Theory
A direct method called fixation is introduced for solving the general motion vision problem, arbitrary motion relative to an arbitrary environment. This method results in a linear constraint equation which explicitly expresses the rotational velocity in terms of the translational velocity. The combination of this constraint equation with the Brightness-Change Constraint Equation solves the gene...
متن کامل